
Lecture 9

Universal Compression with Lempel-Ziv compression
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Recap

Notion of conditional entropy & entropy rate.

Context-based adaptive arithmetic coding.

Recall, entropy rate:

H(U) = ​H(U ​∣U ​,U ​, … ,U ​) =
n→∞
lim n+1 1 2 n ​ ​

n→∞
lim

n

H(U ​,U ​, … ,U ​)1 2 n
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Today

Study universal compressors - a scheme that does well on any stationary input without
prior knowledge of the source distribution.

As part of this - explore one of the most common schemes used in practical compressors!
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Universal compressor

Consider a compressor  that works on arbitrary length inputs and has length function 

.

Definition: Universal Compressor

 is universal if

​ ​E[l(X )] =
n→∞
lim

n

1 n H(X)

for any stationary ergodic source.

So a single compressor  is asymptotically optimal for every stationary distribution

without prior knowledge of the source distribution!

C

l(x )n

C

C
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Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's  approximates any stationary distribution arbitrarily closely

as  grows!

In particular a universal compressor is a universal predictor!

​(x ) =p̂ n 2−l(x )n

​p̂

n
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Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's  approximates any stationary distribution arbitrarily closely
as  grows!

In particular a universal compressor is a universal predictor!

All this needs to be rigorously formulated, e.g., see the reference below, talk to Tsachy, and

take EE 376C!

Ref: M. Feder, N. Merhav and M. Gutman, "Universal prediction of individual sequences," in

IEEE Transactions on Information Theory, vol. 38, no. 4, pp. 1258-1270, July 1992, doi:
10.1109/18.144706.

​(x ) =p̂ n l(x )n

​p̂

n
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Lempel-Ziv universal algorithms

LZ77: in gzip, zstd, png, zip, lz4, snappy

LZ78

LZW (Lempel-Ziv-Welch) (LZ78 variant): in linux compress utility, GIF

LZMA (Lempel–Ziv–Markov chain algorithm) (LZ77 variant): 7-Zip

References:

1. LZ77: Ziv, Jacob, and Abraham Lempel. "A universal algorithm for sequential data

compression." IEEE Transactions on information theory 23.3 (1977): 337-343.

2. LZ78: Ziv, Jacob, and Abraham Lempel. "Compression of individual sequences via
variable-rate coding." IEEE transactions on Information Theory 24.5 (1978): 530-536.

3. LZW: Welch, Terry A. "A technique for high-performance data compression."
Computer 17.06 (1984): 8-19.
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LZ77 algorithm

Simple idea: Replace repeated segments in data with pointers and lengths!
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LZ77 parsing example

ABBABBABBCAB

Unmatched literals Match length Match offset

- - -

- - -

- - -
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LZ77 parsing example

A[B]BABBABBCAB

Unmatched literals Match length Match offset

AB 1 1

- - -

- - -
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LZ77 parsing example

[ABBABB]ABBCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

- - -
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LZ77 parsing example

ABBABB[AB]BCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4
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LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded:

EE 274: Data Compression - Lecture 9 13



LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABB
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LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABB
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LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABBCAB
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LZ77 parsing

Pseudocode:

For input sequence x[0], x[1], ...


Suppose we have parsed till x[i-1].


- Try to find largest k such that for some j < i

  x[j:j+k] = x[i:i+k]


- Then the match length is k and the match offset is i-j 


  [note that the ranges j:j+k and i:i+k are allowed to overlap]


- If no match found, store as literal.
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LZ77 unparsing

Pseudocode:

At each step:


- First read any literals and copy to output y.


- To decode a match with length l and offset o.

  - If l < o:

    - append y[-o:-o+l] to y

  - Else:

    // Need to be more careful with overlapping matches!

    - For _ in 0:l:

      - append y[-o] to y

Decompression is very fast since it just involves copying!
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Quiz question

Apply the above parsing and unparsing algorithms for the following:

1. Parse AABBBBBBBAABBBCDCDCD.

2. Unparse the below table (note that this parsing was generated using a different parser

than the one described above!):

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2
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Encoding step

                    ┌─────────────┐      ┌──────────────┐      ┌───────────┐     ┌──────────┐

┌──────────┐        │             │      │   Literals   │      │ Entropy   │     │Compressed│

│Input data├───────►│LZ77 parsing ├─────►│              ├─────►│  coding   ├────►│          │

└──────────┘        │             │      │    Matches   │      │           │     │  File    │

                    └─────────────┘      └──────────────┘      └───────────┘     └──────────┘


Need to encode the literals, match lengths and match offsets.

Implementations (gzip, zstd, etc.) differ in the approach.

Typically use Huffman coding/ANS with some modifications to optimize for real-life

data.

More on this later today and in next lecture!
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LZ77 universality proof idea

Question:

Consider iid sequence 

If , what is the expected value of the  such that  and  for 

? [in words, expected time we last saw ]

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a
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LZ77 universality proof idea

Question:

Consider iid sequence 

If , what is the expected value of the  such that  and  for 

? [in words, expected time we last saw ]

Hint: What is the mean of the geometric distribution?

Hint: How many times does  occur in a sequence of length ? How often it must repeat?

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a

a n
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LZ77 universality proof idea

Question:

Consider iid sequence 

If , what is the expected value of the  such that  and  for 

? [in words, expected time we last saw ]

Hint: What is the mean of the geometric distribution?

Hint: How many times does  occur in a sequence of length ? How often it must repeat?

Answer:

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a

a n

E[t] = ​

P (a)
1
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LZ77 universality proof idea

Generalize the above property to stationary ergodic processes.

Kac's Lemma

Let  be a stationary ergodic process and let 

 be the recurrence time (last time  occurred

before index ). Given that , we have

E[R ​(X ​, … ,X ​)] =n 0 n−1 ​

p(x ​)0
n−1
1

So you are likely to have seen  with a match offset of .

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

R ​(X ​, … ,X ​)n 0 n−1 X ​, … ,X ​0 n−1

0 (X ​, … ,X ​) =0 n−1 x ​0
n−1

x ​0
n−1

​

p(x ​)0
n−1
1
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LZ77 universality proof idea

Can encode the match offset  using close to  bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer  in roughly  bits).

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2
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LZ77 universality proof idea

Can encode the match offset  using close to  bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a
positive integer  in roughly  bits).

Match length and literal contribution is negligible!

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2
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LZ77 universality proof idea

Can encode the match offset  using close to  bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a
positive integer  in roughly  bits).

Match length and literal contribution is negligible!

E[l(X )] ≈n E[log ​ ​ ] =2
p(x ​)0

n−1
1

H(X )n

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2
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LZ77 universality proof idea

Can encode the match offset  using close to  bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer  in roughly  bits).

Match length and literal contribution is negligible!

E[l(X )] ≈n E[log ​ ​ ] =2
p(x ​)0

n−1
1

H(X )n

​ ​E[l(X )] ≈
n→∞
lim

n

1 n
​ ​H(X ) =

n→∞
lim

n

1 n H(X)

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2
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LZ77 universality proof idea

Can encode the match offset  using close to  bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer  in roughly  bits).

Match length and literal contribution is negligible!

E[l(X )] ≈n E[log ​ ​ ] =2
p(x ​)0

n−1
1

H(X )n

​ ​E[l(X )] ≈
n→∞
lim

n

1 n
​ ​H(X ) =

n→∞
lim

n

1 n H(X)

For a more detailed and rigorous proof, check out Cover and Thomas chapter 13 or

A. D. Wyner and J. Ziv, "The sliding-window Lempel-Ziv algorithm is asymptotically
optimal," in Proceedings of the IEEE, vol. 82, no. 6, pp. 872-877, June 1994, doi:

10.1109/5.286191.

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2
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LZ77 universality proof idea

Asymptotic theory doesn't fully explain the excellent performance in practice: the idea of

finding matches is just very well-matched to real-life data which is not always modeled
easily as a th order Markov process.k
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LZ77 parsing on real data - examples

Let's look at how matches look in practice and how the match lengths and offsets are
typically distributed.

We use the LZ77 implementation in SCL for this purpose.
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LZ77 parsing on real data - examples

Long matches:
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LZ77 parsing on real data - examples

Long matches:
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LZ77 parsing on real data - examples

Far off matches (150 KB apart) [ pleasure ]:

First page:

So she was considering in her own mind (as well as she could,

for the hot day made her feel very sleepy and stupid), whether

the pleasure of making a daisy-chain would be worth the trouble

of getting up and picking the daisies, when suddenly a White

Rabbit with pink eyes ran close by her.


Last page:

, and make THEIR eyes bright and eager

with many a strange tale, perhaps even with the dream of

Wonderland of long ago:  and how she would feel with all their

simple sorrows, and find a pleasure in all their simple joys,

remembering her own child-life, and the happy summer days.


                            THE END
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LZ77 parsing on real data - examples
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LZ77 parsing on real data - examples
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Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

EE 274: Data Compression - Lecture 9 37



Practical considerations
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Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

Do I need to keep infinite past memory?!
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Practical considerations

How to find matches?

Fix minimum match length and index in hash table (check out the chained hash
table for an optimized implementation!)

Do I need to keep infinite past memory?!
Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs

(zstd) window.
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Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

Do I need to keep infinite past memory?!

Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs
(zstd) window.

Is finding the longest match at every step optimal?
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Practical considerations

How to find matches?

Fix minimum match length and index in hash table (check out the chained hash
table for an optimized implementation!)

Do I need to keep infinite past memory?!

Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs
(zstd) window.

Is finding the longest match at every step optimal?
No. Sometimes a literal costs less than encoding a very short match.

Can find a longer match at the next position if we sacrifice to get a literal/shorter

match at this step.

The tradeoffs depend on how the entropy encoding works.
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Entropy coding

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2

encoded as
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Entropy coding

literals = AABBBCDCD


and

Literal counts Match length Match offset

5 4 1

0 5 9

4 2 2
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Entropy coding

Each of streams encoded using various entropy coding approaches.

Huffman - dynamic/static

zstd - Huffman only for literals

ANS/arithmetic coding

Universal integer coders

For very high speeds, skip entropy coding! (LZ4, Snappy)
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Practical considerations

Parsing strategy, window size, entropy coding matters a lot in determining speed and

memory usage.
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That's it for now!

Next lecture - Yann Collet: author of zstd, lz4, FSE (implementation of tANS)

We didn't talk about LZ78 and LZW - similar core ideas but slightly different tree-

based parsing method
For LZ78, possible to prove very powerful universality results, including non-

asymptotic ones!

In particular can show that LZ78 gets compression rate within 

 of the optimal th order model for any sequence.

Learn more in EE 376C.

O( ​ +log n
k

​ )log n
log log n k
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