
Lecture 9

Universal Compression with Lempel-Ziv compression

EE 274: Data Compression - Lecture 9 1

Recap

Notion of conditional entropy & entropy rate.

Context-based adaptive arithmetic coding.

Recall, entropy rate:

H(U) = ​H(U ​∣U ​,U ​, … ,U ​) =
n→∞
lim n+1 1 2 n ​ ​

n→∞
lim

n

H(U ​,U ​, … ,U ​)1 2 n

EE 274: Data Compression - Lecture 9 2

Today

Study universal compressors - a scheme that does well on any stationary input without
prior knowledge of the source distribution.

As part of this - explore one of the most common schemes used in practical compressors!

EE 274: Data Compression - Lecture 9 3

Universal compressor

Consider a compressor that works on arbitrary length inputs and has length function

.

Definition: Universal Compressor

 is universal if

​ ​E[l(X)] =
n→∞
lim

n

1 n H(X)

for any stationary ergodic source.

So a single compressor is asymptotically optimal for every stationary distribution

without prior knowledge of the source distribution!

C

l(x)n

C

C

EE 274: Data Compression - Lecture 9 4

Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's approximates any stationary distribution arbitrarily closely

as grows!

In particular a universal compressor is a universal predictor!

​(x) =p̂ n 2−l(x)n

​p̂

n

EE 274: Data Compression - Lecture 9 5

Thinking in terms of universal predictors

Recall from last lecture that a compressor induces a distribution via it's length
function: .

A universal compressor's approximates any stationary distribution arbitrarily closely
as grows!

In particular a universal compressor is a universal predictor!

All this needs to be rigorously formulated, e.g., see the reference below, talk to Tsachy, and

take EE 376C!

Ref: M. Feder, N. Merhav and M. Gutman, "Universal prediction of individual sequences," in

IEEE Transactions on Information Theory, vol. 38, no. 4, pp. 1258-1270, July 1992, doi:
10.1109/18.144706.

​(x) =p̂ n l(x)n

​p̂

n

EE 274: Data Compression - Lecture 9 6

Lempel-Ziv universal algorithms

LZ77: in gzip, zstd, png, zip, lz4, snappy

LZ78

LZW (Lempel-Ziv-Welch) (LZ78 variant): in linux compress utility, GIF

LZMA (Lempel–Ziv–Markov chain algorithm) (LZ77 variant): 7-Zip

References:

1. LZ77: Ziv, Jacob, and Abraham Lempel. "A universal algorithm for sequential data

compression." IEEE Transactions on information theory 23.3 (1977): 337-343.

2. LZ78: Ziv, Jacob, and Abraham Lempel. "Compression of individual sequences via
variable-rate coding." IEEE transactions on Information Theory 24.5 (1978): 530-536.

3. LZW: Welch, Terry A. "A technique for high-performance data compression."
Computer 17.06 (1984): 8-19.

EE 274: Data Compression - Lecture 9 7

LZ77 algorithm

Simple idea: Replace repeated segments in data with pointers and lengths!

EE 274: Data Compression - Lecture 9 8

LZ77 parsing example

ABBABBABBCAB

Unmatched literals Match length Match offset

- - -

- - -

- - -

EE 274: Data Compression - Lecture 9 9

LZ77 parsing example

A[B]BABBABBCAB

Unmatched literals Match length Match offset

AB 1 1

- - -

- - -

EE 274: Data Compression - Lecture 9 10

LZ77 parsing example

[ABBABB]ABBCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

- - -

EE 274: Data Compression - Lecture 9 11

LZ77 parsing example

ABBABB[AB]BCAB

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

EE 274: Data Compression - Lecture 9 12

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded:

EE 274: Data Compression - Lecture 9 13

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABB

EE 274: Data Compression - Lecture 9 14

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABB

EE 274: Data Compression - Lecture 9 15

LZ77 unparsing example

Unmatched literals Match length Match offset

AB 1 1

- 6 3

C 2 4

Decoded: ABBABBABBCAB

EE 274: Data Compression - Lecture 9 16

LZ77 parsing

Pseudocode:

For input sequence x[0], x[1], ...

Suppose we have parsed till x[i-1].

- Try to find largest k such that for some j < i

 x[j:j+k] = x[i:i+k]

- Then the match length is k and the match offset is i-j

 [note that the ranges j:j+k and i:i+k are allowed to overlap]

- If no match found, store as literal.

EE 274: Data Compression - Lecture 9 17

LZ77 unparsing

Pseudocode:

At each step:

- First read any literals and copy to output y.

- To decode a match with length l and offset o.

 - If l < o:

 - append y[-o:-o+l] to y

 - Else:

 // Need to be more careful with overlapping matches!

 - For _ in 0:l:

 - append y[-o] to y

Decompression is very fast since it just involves copying!

EE 274: Data Compression - Lecture 9 18

Quiz question

Apply the above parsing and unparsing algorithms for the following:

1. Parse AABBBBBBBAABBBCDCDCD.

2. Unparse the below table (note that this parsing was generated using a different parser

than the one described above!):

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2

EE 274: Data Compression - Lecture 9 19

Encoding step

 ┌─────────────┐ ┌──────────────┐ ┌───────────┐ ┌──────────┐

┌──────────┐ │ │ │ Literals │ │ Entropy │ │Compressed│

│Input data├───────►│LZ77 parsing ├─────►│ ├─────►│ coding ├────►│ │

└──────────┘ │ │ │ Matches │ │ │ │ File │

 └─────────────┘ └──────────────┘ └───────────┘ └──────────┘

Need to encode the literals, match lengths and match offsets.

Implementations (gzip, zstd, etc.) differ in the approach.

Typically use Huffman coding/ANS with some modifications to optimize for real-life

data.

More on this later today and in next lecture!

EE 274: Data Compression - Lecture 9 20

LZ77 universality proof idea

Question:

Consider iid sequence

If , what is the expected value of the such that and for

? [in words, expected time we last saw]

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a

EE 274: Data Compression - Lecture 9 21

LZ77 universality proof idea

Question:

Consider iid sequence

If , what is the expected value of the such that and for

? [in words, expected time we last saw]

Hint: What is the mean of the geometric distribution?

Hint: How many times does occur in a sequence of length ? How often it must repeat?

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a

a n

EE 274: Data Compression - Lecture 9 22

LZ77 universality proof idea

Question:

Consider iid sequence

If , what is the expected value of the such that and for

? [in words, expected time we last saw]

Hint: What is the mean of the geometric distribution?

Hint: How many times does occur in a sequence of length ? How often it must repeat?

Answer:

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

X ​ =0 a T X ​ =−T a X ​ =−s  a

0 < s < T a

a n

E[t] = ​

P (a)
1

EE 274: Data Compression - Lecture 9 23

LZ77 universality proof idea

Generalize the above property to stationary ergodic processes.

Kac's Lemma

Let be a stationary ergodic process and let

 be the recurrence time (last time occurred

before index). Given that , we have

E[R ​(X ​, … ,X ​)] =n 0 n−1 ​

p(x ​)0
n−1
1

So you are likely to have seen with a match offset of .

… ,X ​,X ​,X ​,X ​,X ​, …−2 −1 0 1 2

R ​(X ​, … ,X ​)n 0 n−1 X ​, … ,X ​0 n−1

0 (X ​, … ,X ​) =0 n−1 x ​0
n−1

x ​0
n−1

​

p(x ​)0
n−1
1

EE 274: Data Compression - Lecture 9 24

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer in roughly bits).

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2

EE 274: Data Compression - Lecture 9 25

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a
positive integer in roughly bits).

Match length and literal contribution is negligible!

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2

EE 274: Data Compression - Lecture 9 26

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a
positive integer in roughly bits).

Match length and literal contribution is negligible!

E[l(X)] ≈n E[log ​ ​] =2
p(x ​)0

n−1
1

H(X)n

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2

EE 274: Data Compression - Lecture 9 27

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer in roughly bits).

Match length and literal contribution is negligible!

E[l(X)] ≈n E[log ​ ​] =2
p(x ​)0

n−1
1

H(X)n

​ ​E[l(X)] ≈
n→∞
lim

n

1 n
​ ​H(X) =

n→∞
lim

n

1 n H(X)

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2

EE 274: Data Compression - Lecture 9 28

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Can encode the match offset using close to bits using an

appropriate uint coder (e.g., check out the Elias Delta code in SCL which encodes a

positive integer in roughly bits).

Match length and literal contribution is negligible!

E[l(X)] ≈n E[log ​ ​] =2
p(x ​)0

n−1
1

H(X)n

​ ​E[l(X)] ≈
n→∞
lim

n

1 n
​ ​H(X) =

n→∞
lim

n

1 n H(X)

For a more detailed and rigorous proof, check out Cover and Thomas chapter 13 or

A. D. Wyner and J. Ziv, "The sliding-window Lempel-Ziv algorithm is asymptotically
optimal," in Proceedings of the IEEE, vol. 82, no. 6, pp. 872-877, June 1994, doi:

10.1109/5.286191.

​

p(x ​)0
n−1
1 log ​ ​2 p(x ​)0

n−1
1

n log ​ n +2 2 log ​ log ​ n2 2

EE 274: Data Compression - Lecture 9 29

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/elias_delta_uint_coder.py

LZ77 universality proof idea

Asymptotic theory doesn't fully explain the excellent performance in practice: the idea of

finding matches is just very well-matched to real-life data which is not always modeled
easily as a th order Markov process.k

EE 274: Data Compression - Lecture 9 30

LZ77 parsing on real data - examples

Let's look at how matches look in practice and how the match lengths and offsets are
typically distributed.

We use the LZ77 implementation in SCL for this purpose.

EE 274: Data Compression - Lecture 9 31

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/lz77.py

LZ77 parsing on real data - examples

Long matches:

EE 274: Data Compression - Lecture 9 32

LZ77 parsing on real data - examples

Long matches:

EE 274: Data Compression - Lecture 9 33

LZ77 parsing on real data - examples

Far off matches (150 KB apart) [pleasure]:

First page:

So she was considering in her own mind (as well as she could,

for the hot day made her feel very sleepy and stupid), whether

the pleasure of making a daisy-chain would be worth the trouble

of getting up and picking the daisies, when suddenly a White

Rabbit with pink eyes ran close by her.

Last page:

, and make THEIR eyes bright and eager

with many a strange tale, perhaps even with the dream of

Wonderland of long ago: and how she would feel with all their

simple sorrows, and find a pleasure in all their simple joys,

remembering her own child-life, and the happy summer days.

 THE END

EE 274: Data Compression - Lecture 9 34

LZ77 parsing on real data - examples

EE 274: Data Compression - Lecture 9 35

LZ77 parsing on real data - examples

EE 274: Data Compression - Lecture 9 36

Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

EE 274: Data Compression - Lecture 9 37

Practical considerations

EE 274: Data Compression - Lecture 9 38

Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

Do I need to keep infinite past memory?!

EE 274: Data Compression - Lecture 9 39

Practical considerations

How to find matches?

Fix minimum match length and index in hash table (check out the chained hash
table for an optimized implementation!)

Do I need to keep infinite past memory?!
Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs

(zstd) window.

EE 274: Data Compression - Lecture 9 40

Practical considerations

How to find matches?
Fix minimum match length and index in hash table (check out the chained hash

table for an optimized implementation!)

Do I need to keep infinite past memory?!

Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs
(zstd) window.

Is finding the longest match at every step optimal?

EE 274: Data Compression - Lecture 9 41

Practical considerations

How to find matches?

Fix minimum match length and index in hash table (check out the chained hash
table for an optimized implementation!)

Do I need to keep infinite past memory?!

Use sliding window - only find matches in past 10s of KBs (gzip) to multiple MBs
(zstd) window.

Is finding the longest match at every step optimal?
No. Sometimes a literal costs less than encoding a very short match.

Can find a longer match at the next position if we sacrifice to get a literal/shorter

match at this step.

The tradeoffs depend on how the entropy encoding works.

EE 274: Data Compression - Lecture 9 42

Entropy coding

Unmatched literals Match length Match offset

AABBB 4 1

- 5 9

CDCD 2 2

encoded as

EE 274: Data Compression - Lecture 9 43

Entropy coding

literals = AABBBCDCD

and

Literal counts Match length Match offset

5 4 1

0 5 9

4 2 2

EE 274: Data Compression - Lecture 9 44

Entropy coding

Each of streams encoded using various entropy coding approaches.

Huffman - dynamic/static

zstd - Huffman only for literals

ANS/arithmetic coding

Universal integer coders

For very high speeds, skip entropy coding! (LZ4, Snappy)

EE 274: Data Compression - Lecture 9 45

Practical considerations

Parsing strategy, window size, entropy coding matters a lot in determining speed and

memory usage.

EE 274: Data Compression - Lecture 9 46

That's it for now!

Next lecture - Yann Collet: author of zstd, lz4, FSE (implementation of tANS)

We didn't talk about LZ78 and LZW - similar core ideas but slightly different tree-

based parsing method
For LZ78, possible to prove very powerful universality results, including non-

asymptotic ones!

In particular can show that LZ78 gets compression rate within

 of the optimal th order model for any sequence.

Learn more in EE 376C.

O(​ +log n
k

​)log n
log log n k

EE 274: Data Compression - Lecture 9 47

